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High-Energy Electron Pair Production on Oxygen 
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Electron-positron pair production cross sections are calculated for 50-MeV elec- 
trons incident on an oxygen nucleus. The symmetric coplanar cross sections 
are emphasized. Neglecting exchange, the spectra of forward-scattered projectile 
electrons is numerically calculated. In the extreme relativistic and nonrelativistic 
limits for the produced pair kinetic energies, calculated cross sections are similar 
to those of Bhabha. 

1. INTRODUCTION 

Recent studies have enhanced interest in calculating lepton pair produc- 
tion cross sections. Pair creation studies in heavy-ion collisions (Kienle, 
1986) have revealed correlated electron-positron pairs, emitted back to back 
with about equal energies. The observations (Cowan et al., 1986) may sug- 
gest a resonance exists at 1.83 MeV. Searches in the time-reversed scattering 
system of  electron plus positron have not yet seen such a resonance (Tsertos 
et al., 1988). Lasers have been proposed (Hora and Loeb, 1986; Kidder, 
1974) to initiate the pair production of lepton and antiproton pairs. Lasers 
would be much more efficient producers of such pairs than are classical 
particle accelerators. The highest threshold for pair production by lasers is 
that from vacuum polarization (Hora, 1974). 

The experimental production of relativistic positronium has been  
reported (Alekseev et  al., 1984) in observing neutral pion decay. Positron- 
ium production cross sections have been estimated for extreme relativistic 
energies (Bilenkil et  al., 1969; Meledin et al., 1971) and calculated to 
lowest order by Olson (1986) and Holvik and Olsen (1987). The positron- 
ium production cross sections are closely related to the (uncorrelated) 
pair production cross sections. The differences are due to phase space 

~Institute f~r Theoretische Physik, University of T/ibigen, D 7400 Germany. 
2Permanent address: Physics Department, University of Georgia, Athens, Georgia 30602-9986. 

1235 
0020-7748/91/0900-1235506.50/0 (~) 1991 Plenum Publishing Corporation 



1236 Strobel and Koss 

and normalization factors. The positronium production process has the 
electron and positron produced in a bound state, while in pair production, 
the produced electron and positron are free. High-energy electron pair 
production in the field of a nucleus is similar to electromagnetic pair 
production in the field of a nucleus (Bethe and Heitler, 1934). The lowest 
order quantum electrodynamic (QED) description of electron-induced pair 
production uses Feynman diagrams analogous to the electromagnetic pair 
production Feynman diagrams. Several authors (Bethe and Maximon, 
1954; Davies et  al., 1954; Olsen et  al., 1975; Landro et  al., 1987) have 
calculated the differential cross section for electromagnetic lepton pair 
production in the Coulomb field with arbitrary Z. 

Lepton pair production is also an important energy loss mechanism for 
high-energy electrons traversing the atmosphere. We therefore consider 50- 
MeV electrons incident on an oxygen nucleus that forward scatter and lose 
no more than 10 MeV of energy in the rest frame of the target nucleus. 
Bhabha (1935) calculated electron-induced pair production using a 
Weizacker-Williams impact parameter calculation, treating the electron as 
traveling straight ahead. Bhabha calculated approximate expressions for the 
differential cross sections when the produced lepton pair shared only a small 
amount of kinetic energy, and also when the kinetic energy shared by the 
produced pair was large compared to the electron mass. Here a cross section 
is calculated that in addition interpolates between those extremes. The final- 
state electron will be considered as moving straight ahead after the pair 
production. 

In lowest order QED, for electron-induced pair production on a spinless 
point nucleus of charge Z, there are seven Feynman diagrams, plus seven 
exchange diagrams contributing to the reaction amplitude. In the region of 
phase space considered, the exchange diagrams are neglected and we associ- 
ate the higher-energy final-state electron with the projectile. We also neglect 
diagrams where both photons interact with the target nucleus. These are 
small and would vanish in the limit of no recoil energy for the final-state 
nucleus. 

The Feynman diagrams included in a lowest order QED expansion of 
the amplitude are shown in Figure 1. On the right-hand side of Figure 1 
are shown the no-nuclear-recoil limit of the same diagrams. The last three 
diagrams vanish in this limit. For 50-MeV electrons forward, or nearly 
forward scattered from an oxygen target nucleus, the recoil energy is small 
compared to the electron mass. Therefore, these diagrams are neglected in 
the calculations reported here. The positron four-momentum is denoted by 
P3 in this calculation, and the projectile four-momentum in the final state is 
denoted by P1. Z denotes the nuclear charge and the electron mass is m. 
Conservation of four-momenta between the initial and final states is 
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Fig. 1. Lowest order QED Feynman diagrams for pair production by an electron incident on 
a target nucleus with initial four-momenta P and T, respectively. The final positron momentum 
is P. The right half shows the no-recoil-energy-approximation diagrams for pair production. 
The last three diagrams vanish. 

indicated by the relat ion 

P+ T=PI +P2+P3+R 

where the initial state is an electron of  f o u r - m o m e n t u m  P incident  on to  a 
nucleus of f o u r - m o m e n t u m  T. In  the final state, the produced electron has 
f o u r - m o m e n t u m  P2, and  the recoiling nucleus has f o u r - m o m e n t u m  R. 
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2. THEORY 

The invariant amplitude (Bjorken and Drell, 1964) is written as 
4 

M = C ~  M i  
i = l  

where 

(1) 

M i  = N i / D ,  (2) 

and where C is a common coefficient defined as 

C = - i e 4 Z / 2 m  (3) 

and the Di are defined in Table I. The denominators Di come from the pair 
of photon propagators and also the fermion propagator associated with each 
of  the first four diagrams of  Figure 1 that are included in this calculation. 
The rest of  the invariant amplitude is written as a product of  two factors, 

N, =F,G, 

Nz= F2G2 

N 3 =  F3G3 (4) 

N 4 = F 4 G 4  

These F and G factors can be determined from the Feynman diagrams 
of Figure 1. The amplitudes F and G are exhibited in Table I. 

The completely polarized cross section is proportional to IMI 2. To cal- 
culate the unpolarized cross section, the initial- and final-state spins are at 

Table I 

D, = ( P -  P , ) 2 ( T -  R)2(K 2 - m  2) 
D2 = ( P  - PI )2( T -  R)2(K2 2 - m 2) 
D3 = ( P -  K 3 ) 2 ( T -  R)Z(K32- m 2) 
0 4  = (P2 + p3 )2 (T  - R)2(K 2 - rn2) 

S = T + R  

F~ = ( ] (PI ) (4P-  2PI)U(P) 
F2=F, 

F3 = (]( P,)~(K3 + m) U( P) 
F4 = (](PO(K4+m),~U(P) 

G, = O(P2),~(K, + m)V(P3) 
G2 = (]( P2)(K2 + m)~V( P3) 
G3 = ~'(P2)(-4,/~3 - 2~2) V(P3) 
G4 = G3 

K, = P -  P, - P3 
K2= PI + P 2 -  P 
K 3 = P - P 2 - P 3  
K4= PI + P2 + P3 
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first summed over. Thus, one arrives at the four diagonal and six off-diagonal 
traces, 

4 
Z iM] 2 = C2 Y', T r  FiFj T r  GiGj/DiDj (5) 

spins /j 

The values of  these traces are indicated in the Appendix. 
One should average over the initial-state spin components, and sum 

over the final-state spin components, rather than summing over each. 
Accounting for initial-state averaging is done by including a factor of 1/2. 
There are two identical electrons in the final state, even though exchange is 
neglected here. So the statistical factor is S--2.  The factors appear as the 
first two factors in the denominator of equation (6) below. 

The most differential cross section is 12-fold differential and includes a 
four-dimensional delta function conserving momenta and energy between 
the initial and final states. This cross section is trivially integrated over the 
three-momentum of  the recoil nucleus, which is not observed. Also, here, 
the differential cross section is integrated over the magnitude of  the positron 
momenta, eliminating the four-dimensional delta function conserving four- 
momenta between the initial and final states. Writing e 2= 4rca, where a is 
the fine structure constant ~1/137, the eightfold differential cross section 
remaining is written as 

da 
dql dq2 d~l d~2 d~3 

16m2a4Z2(197"3)2q~q ~ ~spins I~=,  M;IZq3 

- 2" 2(4TC)4vo)AO), 0~{O)R + CO3 + qeYo)3/q3} (6) 

The o), o)1, r o)3, and (or are the energies of the projectile, the final 
electron, the pair-produced electron and positron, and of the recoil nucleus, 
respectively. The last factor in the denominator of equation (6) comes from 
the energy-conserving delta function when the magnitude of the positron 
momentum was integrated over. The units are fermi** 2/MeV**2 Sr**3 for 
the cross section. The electron mass m is in MeV, the target nucleus mass A 
is also in MeV. The projectile momentum is q, in MeV/c, the final electron 
momenta are ql for the projectile, q2 for the pair-produced electron, and q3 
for the positron. Ms is from the invariant amplitude squared, summed over 
spins; see equation (1). The frame where the target nucleus is at rest is 
chosen to work in so that v is the velocity of the projectile electron, about 
1 in our units of  c, the speed of  light, q, ql, q2, q3 are the three-momenta of  
the projectile, final-state electron, pair-produced electron, and positron in 
the final state, respectively, y is the cosine of the angle between the positron 
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momentum and the difference between the initial and the final electron 
momenta, that is, 

Y = q3" qe/q3qe, q3 = q -  ql - q2 (7) 

The projectile-electron final three-momentum ql is considered to be 
unscattered. Thus, when the azimuthal angles ~b2 and 4)3 for the pair-pro- 
duced electron and positron differ by re, a coplanar final state geometry 
results. When the spherical polar angles of the three-momenta of the pro- 
duced pair, 02 and 03, are equal, the calculated cross section is referred to 
as a symmetric coplanar cross section. It is this cross section that is primarily 
reported in the next section. 

3. RESULTS 

In Figure 2, the calculated forward symmetric coplanar cross section is 
shown. The produced pair share about 1 MeV of kinetic energy. The geom- 
etry shown is for the projectile to be unscattered, and for the produced pair 
to also be traveling in the forward direction. Thus, for the curve shown in 
Figure 2, all three final-state leptons are traveling with colinear three- 
momenta. This forward spectrum peaks for a positron momentum of about 
0.8 MeV/c. The general shape of the spectrum can be understood from final- 
state phase-space considerations visible in equation (5). When this curve is 
integrated over all positron momentum values, one obtains about 1700 f2/ 

Fig. 2. 
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Forward positron spectrum for 50-MeV electrons losing 2 MeV energy on oxygen. All 
final-state leptons go straight ahead. 
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MeV Sr  3, which value appears in Figure 3. Figure 3 shows the symmetric 
coplanar energy loss cross section versus the production angle for the pair. 
The projectile has 50 MeV energy and the final state electron has 48 MeV 
energy. Thus, the electron has undergone a 2-MeV energy loss, but is unscat- 
tered in direction. This symmetric coplanar cross section is peaked for pair 
production also in the forward direction. As the pair is produced at larger 
angles with respect to the projectile direction, the cross section monotonically 
decreases with angle for a projectile energy loss of 2 MeV. 

As the energy loss of the projectile approaches about 1.4 MeV or 
less, this pair production cross section becomes isotropic in a smooth 
fashion. In this small energy loss region, the integrated-over-angle pair- 
production cross section, for a given projectile energy loss, is proportional 
to the cube of the kinetic energy that the produced pair share, in 
agreement with Bhabha. When the projectile energy loss exceeds about 
1.4 MeV, the energy shared by the produced pair is no longer small 
compared to the electron rest mass, and the calculation of Bhabha is not 
valid in this phase space region. When the produced pair share about 
0.8 MeV kinetic energy, as in Figure 3, the cross section is not isotropic. 
Instead the symmetric pair production cross section can be characterized as 
having a cone angle of 1/gamma. Here, gamma is something like m/E, where 
E is an average energy of the leptons of the produced pair. At any rate, the 
calculated symmetric pair production cross section is forward peaked, and 
for an energy loss of 2 MeV for the projectile, falls to half its maximum 
value when the cone angle of the produced pair is about 0.2 rad. 

1600- 
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~ eoo- 

0 '  

0,~0 Q85 o,9o o,95 1,oo 
COS 0 2 

Fig. 3. Symmetric coplanar cross section for pair production for 50-MeV electrons losing 
2 MeV on oxygen. These conditions nearly match those at the peak seen in Figure 8. 
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Figure 4 shows the symmetric coplanar cross section for pair produc- 
tion where the final electron energy is held to various constant values. 
As the produced pair share less kinetic energy, the symmetric coplanar 
cross section becomes more nearly isotropic. Conversely, as the projectile 
loses more energy, the cross section becomes more strongly peaked in the 
forward direction. In Figure 4, this cross section is shown on a logarithmic 
scale. One observes that the differential cross section at forward angles 

48,4 

t/) 

b 
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Fig. 4. 
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Symmetric coplanar cross section for various small energy losses by projectile electron 
versus scattering angle of  the produced pair. Note the logarithmic scale. 
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rises as the energy loss increases. The half-width of the calculated differen- 
tial symmetric coplanar cross section decreases as the energy loss of the 
projectile increases. 

Figure 5 shows the symmetric coplanar cross section for projectile 
energy losses of 1.8 MeV and more, versus the cone angle of the produced 
pair. The cross section is still forward peaked and the slope of the cross 
section continues to rise as the projectile energy loss increases. The peak 
cross section continues to increase with the projectile energy loss, but a new 
feature occurs. As the projectile loses more than 2 MeV, the pair production 

'~ 1 
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Fig. 5. Symmetric coplanar pair production for projectile energy losses near the peak of Figure 
8 versus scattering angle of the produced pair. The produced pair share a kinetic energy roughly 
equal to their rest mass. 
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cross section becomes peaked at small angles, but not at the exact forward 
direction. The peak cross section occurs when the pair is produced at a small 
cone angle slightly different than zero. 

Figure 6 shows the symmetric coplanar cross sections calculated for 
energy losses of 3 and 4 MeV. The peak cross section continues to increase 
with projectile energy loss, and the calculated cross sections fall almost 
exponentially with the cosine of the pair production angle. Figure 7 shows 
the coplanar cross sections for projectile energy losses of 5 and 10 MeV. 
For these cases, the energy shared by the produced pair is becoming large 
compared to the electron rest mass. The calculated symmetric coplanar cross 
section is strongly forward peaked, and falls off nearly exponentially with 

10 4 - 

l O 2 1  , - /  , �9 . . 

0,92 Q96 1,0 

C05 e 2 

Fig. 6. Symmetric coplanar pair production cross sections versus pair production scattering 
angle. Note a near exponential falloff. The produced pair share a kinetic energy larger than 
their rest masses. 
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Fig. 7. Symmetric coplanar pair production cross section versus pair scattering angle. Note 
the limited range of angle shown, and near exponential falloff of cross section from the peak 
values. The produced pair share a kinetic energy large compared to their rest masses. 

the pair production angle. For these cases, numerically integrating over all 
final-state geometries produces a differential cross section similar in energy 
dependence to the result of Bhabha, when the rest energy of the pair is 
negligible in comparison to the kinetic energy shared. 

When the energy loss of the projectile becomes comparable to the pro- 
jectile energy initially, exchange diagrams are expected to contribute notice- 
ably to the pair production amplitude. The numerically integrated cross 
section shown in Figure 8 is stopped at a minimum final electron energy of 
40 MeV, for which the produced electron would have a maximum energy of 
about 9 MeV. For projectile energy losses greater than this, the exchange 
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Fig. 8. Inclusive calculated forward electron cross section versus final electron momentum. 
The projectile was forward scattered. The production angles of the produced pair are 
numerically integrated over. 

contributions become comparable  to the direct diagrams in the lowest order 
QED amplitude. The direct-only numerically-integrated cross section (not 
shown) continues smoothly to zero as the energy loss approaches the initial 
energy. 

A P P E N D I X  

The traces of  various matrices needed in equation (5) are assembled 
below. The F and G are defined in Table I. Each P, S, and K is a four-vector 
momentum.  S = T + R  is the sum of  the target plus recoil nucleus four- 
momenta .  After summing over all initial and final state spins, one obtains 
the following traces: 

Flffl = 4 ( m 2 + p  �9 P1), G4(~4 =4(P2 " P3 - m 2 )  

F~ff3=2[m(P, �9 S +  S .  K3+ P" S)  

+ P" K3P1" S - P .  SP~K3 + P" P~S. K3]/m 

FiF4= 2[m(P1 �9 S + S " K4 + P " S )  

+ P" SP" K a - P "  K4PI" S + P" P~S" g4]/m 
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F 3 / ~ 4  = S2(m 2 + P" K3 - K3' K4 - -  P" K4- Pl " K3 - -  P" PI + P1 " K 4 )  

+2S.  K3S" K4+2S" P S .  K4+2S- K3PI " S + P . SPI " S 

+[S2p �9 K3P1 �9 K 4 - 2 S "  K3P" KaP1 �9 S + 2 S .  K3P" PIS" K4 

+(2P.  SP1" S - P .  pIS2)K3 �9 K4 

- e l "  K3(2P" S S .  K 4 - P "  K4S2)]/m 2 

F3ff3 = $2(2P �9 K3 - 2P1 �9 K3 + K 2 - P" P1 + m 2) 

+ 2P~. S P .  S+  4Pl" SK3" S 

+ [(4P. K3S" K 3 - 2 P .  SK~)(P, .  S )  

-2P1" K3P" K3S2 + p �9 PISZK2]/m 2 

F4ff'4 = 2S2P1 �9 K4 + S2K] + 4P " SK4 " S 

- 2S2p �9 K4 + 2P.  SP1 " S -  P" P1S 2 + sem 2 

+ [(P. S)(4K4. P , S .  K4-2K~P~.  S )  

- 2P.  K4P1 �9 K1S 2 + P" p1S2K24]/m 2 

GIG4=2[m(P3 �9 S - K 1 "  S - P 2 "  S)  

+ (K1" SP2" P 3 - S .  P3K1 �9 P2 + P2" SKI" P3)/m] 

GzGn=2[m(P3 �9 S - P 2 "  S - K 2 "  S)  

+(K2" SP2" P3-K2"  P3P2" S+K2" e2s"  P3)/m] 

GIC,2=S2(K1 �9 K2-K2"  P2-P3"  K2-P2"  P3 

+ Kl ' P2 + K1 " P 3 -  m 2) 

+2(S.  P3S" K 2 - S "  K~S. 1s 

+ S .  P3S" P 2 - S "  K~S. P2) 

+ (K1" P3K2" PzS 2 -  2Kl .  SP3" K2Pz" S 

+ 2K1" SP2" P3K2" S 

+ 2K1 �9 K2P3" SP2" S - K 1  �9 K 2 P 2 "  P 3 S  2 

-2K1"  PzP3' SK2" S+ K~ �9 PzP3" KzS2)/m 2 

G2G'2 =4S.  P3S' 1s + 2S .  P2S" P3 

-$2(2P2 �9 K2+K~+2K2" P3+P2" P3+m 2) 

+ [P2" P3K~S 2 -  2P2" SP3" SK~ 

+2P2" K2(2S" P3S" K2-sZP3 �9 K2)]/m 2 
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G1G1 = $2(2K1 " P3 - K 2 - P2" P3 + 2K1 �9 P2 - m  2) 

+ 2P2" SP3" S - 4 K 1  �9 SP2" S 

+ [ 2 P 3  " KI(2P2" SKi" S - P 2 "  K1S 2) 

-2P3" SP2" SK2+ p2 �9 P3S2K~]/m 2 
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